Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 1321

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Sintering behavior analysis of compacted dry recycled U$$_{0.7}$$Pu$$_{0.3}$$O$$_{2}$$ powder using master sintering curve theory

Nakamichi, Shinya; Sunaoshi, Takeo*; Hirooka, Shun; Vauchy, R.; Murakami, Tatsutoshi

Journal of Nuclear Materials, 595, p.155072_1 - 155072_11, 2024/07

Journal Articles

A Science-based mixed oxide property model for developing advanced oxide nuclear fuels

Kato, Masato; Oki, Takumi; Watanabe, Masashi; Hirooka, Shun; Vauchy, R.; Ozawa, Takayuki; Uwaba, Tomoyuki; Ikusawa, Yoshihisa; Nakamura, Hiroki; Machida, Masahiko

Journal of the American Ceramic Society, 107(5), p.2998 - 3011, 2024/05

 Times Cited Count:0 Percentile:0.01(Materials Science, Ceramics)

Journal Articles

Validation of the hybrid turbulence model in detailed thermal-hydraulic analysis code SPIRAL for fuel assembly using sodium experiments data of 37-pin bundles

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Nuclear Technology, 210(5), p.814 - 835, 2024/05

In the study of safety enhancement on advanced sodium-cooled fast reactor, it is essential to clarify the thermal-hydraulics under various operation conditions in a fuel assembly (FA) with the wire-wrapped fuel pins to assess the structural integrity of the fuel pin. A finite element thermal-hydraulics analysis code named SPIRAL has been developed to analyze the detailed thermal-hydraulics phenomena in a FA. In this study, the numerical simulations of the 37-pin bundle sodium experiments at different Re number conditions, including a transitional condition between laminar and turbulent flows and turbulent flow conditions, were performed to validate the hybrid turbulence model equipped in SPIRAL. The temperature distributions predicted by SPIRAL was consistent with those measured in the experiments. Through the validation study, the applicability of the hybrid turbulence model in SPIRAL to thermal-hydraulic evaluation of sodium-cooled FA in the wide range of Re number was confirmed.

JAEA Reports

Development of extremely small amount analysis technology for fuel debris analysis (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2023-025, 117 Pages, 2024/03

JAEA-Review-2023-025.pdf:7.29MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2022. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We develop sample pretreatment technology and separation / analysis process required for chemical analysis. The purpose of this study is to streamline future planned fuel debris analysis. To promote 1F decommissioning, we will train human resources through on-the-job training.

Journal Articles

Modeling of the P2M past fuel melting experiments with the FEMAXI-8 code

Mohamad, A. B.; Udagawa, Yutaka

Nuclear Technology, 210(2), p.245 - 260, 2024/02

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

Journal Articles

High-temperature rupture failure of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Mihara, Takeshi; Kakiuchi, Kazuo; Udagawa, Yutaka

Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Thermal conductivity measurement of uranium-plutonium mixed oxide doped with Nd/Sm as simulated fission products

Horii, Yuta; Hirooka, Shun; Uno, Hiroki*; Ogasawara, Masahiro*; Tamura, Tetsuya*; Yamada, Tadahisa*; Furusawa, Naoya*; Murakami, Tatsutoshi; Kato, Masato

Journal of Nuclear Materials, 588, p.154799_1 - 154799_20, 2024/01

 Times Cited Count:1 Percentile:72.91(Materials Science, Multidisciplinary)

The thermal conductivities of near-stoichiometric (U,Pu,Am)O$$_{2}$$ doped with Nd$$_{2}$$O$$_{3}$$/Sm$$_{2}$$O$$_{3}$$, which is major fission product (FP) generated by a uranium-plutonium mixed oxides (MOX) fuel irradiation, as simulated fission products are evaluated at 1073-1673 K. The thermal conductivities are calculated from the thermal diffusivities that are measured using the laser flash method. To evaluate the thermal conductivity from a homogeneity viewpoint of Nd/Sm cations in MOX, the specimens with different homogeneity of Nd/Sm are prepared using two kinds of powder made by ball-mill and fusion methods. A homogeneous Nd/Sm distribution decreases the thermal conductivity of MOX with increasing Nd/Sm content, whereas heterogeneous Nd/Sm has no influence. The effect of Nd/Sm on the thermal conductivity is studied using the classical phonon transport model (A+BT)$$^{-1}$$. The dependences of the coefficients A and B on the Nd/Sm content (C$$_{Nd}$$ and C$$_{Sm}$$, respectively) are evaluated as: A(mK/W)=1.70 $$times$$ 10$$^{-2}$$ + 0.93C$$_{Nd}$$ + 1.20C$$_{Sm}$$, B(m/W)=2.39 $$times$$ 10$$^{-4}$$.

Journal Articles

Estimation method for residual sodium amount on unloaded dummy fuel assembly

Kawaguchi, Munemichi; Hirakawa, Yasushi; Sugita, Yusuke; Yamaguchi, Yutaka

Nuclear Technology, 210(1), p.55 - 71, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

This study has developed an estimation method for residual sodium film and sodium lumps on dummy fuel pins in Monju and demonstrated sodium draining behavior through gaps among the pins, experimentally. The amounts of the residual sodium on the surface of the pins were measured using the three-type test specimens: (a) single pin, (b) 7-pin assembly, and (c) 169-pin assembly. The experiments revealed that the withdrawal speed of the pins and improvement of the sodium wetting increased drastically the amounts of the residual sodium. Furthermore, the experiments using the 169-pin assembly measured the practical amounts of the residual sodium in the dummy fuel assembly of short length and demonstrated sodium draining behavior through the dummy fuel assembly. The estimation method includes four models: a viscosity flow model, Landau-Levich-Derjaguin (LLD) model, an empirical equation related to the Bretherton model, and a capillary force model in a tube. The calculation predicted comparable amounts of the residual sodium with the experiments. An uncertain of the sodium wetting effects were close to 1.8 times the estimation values of the LLD model. With this estimation method, the amounts of the residual sodium on the unloaded Monju dummy fuel assembly can be evaluated.

Journal Articles

The Precipitation and redistribution of alloying element in Zircaloy-4 cladding tube oxidized in high-temperature steam

Amaya, Masaki

High Temperature Corrosion of Materials, 15 Pages, 2024/00

 Times Cited Count:0 Percentile:0.04(Metallurgy & Metallurgical Engineering)

JAEA Reports

Neutron flux estimation and neutronics characteristics calculation in post-JMTR conceptual study

Oizumi, Akito; Akie, Hiroshi

JAEA-Technology 2023-017, 93 Pages, 2023/12

JAEA-Technology-2023-017.pdf:8.45MB

After the decision of decommissioning JMTR (Japan Materials Testing Reactor), Japan Atomic Energy Agency investigated the possibility to construct a new irradiation test reactor to succeed JMTR (post-JMTR), and the final report of the investigated result was submitted to the Ministry of Education, Culture, Sports, Science and Technology on March 30th 2021. This investigation was carried out in 4 steps of (1) selection of reactor type, (2) reactor core plans studies, (3) neutronic studies, (4) thermal studies, and was finally (5) considered and evaluated. This JAEA-Technology report summarizes the process and the results of (3) neutronic studies. Neutron fluxes were calculated at irradiation sample positions in the investigated cores, the standard core and the compact core, and the calculated fluxes satisfied the required irradiation capability. It was also evaluated the two investigated cores' continuous reactor operation time in days in one refueling cycle, and the results guaranteed an operation days equality with that of existing JMTR. In addition, neutronic characteristics of the cores were estimated, such as power distribution in the core, control rod reactivity worth, reactivity coefficients, distribution of fuel burnup rate of each fuel element, and kinetics parameters. The evaluated neutronic characteristics were used in the post-JMTR final investigation report to confirm the neutronic feasibility by comparing with the neutronic limiting values of existing JMTR, and to estimate the cooling capability to make the core thermally feasible.

JAEA Reports

Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of $$beta$$, $$gamma$$, and X-rays (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Japan Chemical Analysis Center*

JAEA-Review 2023-022, 93 Pages, 2023/12

JAEA-Review-2023-022.pdf:4.7MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of rapid and sensitive radionuclide analysis method by simultaneous analysis of $$beta$$, $$gamma$$, and X-rays" conducted from FY2020 to FY2022. The present study aims to enable rapid analysis of radionuclides in fuel debris and waste, we have established the latest measurement system, such as the multiple $$gamma$$-ray detection methods, and the Spectral Determination Method (hereinafter referred to as "SDM") was developed. In the research in 2022, we developed a code that handles measurement data of LSC, singles Ge, and 2D spectra (multiple $$gamma$$). In addition, to develop an integrated database, spectral data of 40 nuclides were obtained by actual measurements and simulation calculations.

Journal Articles

Oxidation and embrittlement behavior of FeCrAl-ODS cladding tube under loss-of-coolant accident conditions

Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki

Journal of Nuclear Materials, 587, p.154736_1 - 154736_8, 2023/12

 Times Cited Count:1 Percentile:0.01(Materials Science, Multidisciplinary)

Journal Articles

Effect of fuel particle size on consequences of criticality accidents in water-moderated solid fuel particle dispersion system

Fukuda, Kodai; Yamane, Yuichi

Journal of Nuclear Science and Technology, 60(12), p.1514 - 1525, 2023/12

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

This study aims to clarify the effect of fuel particle radius on the criticality transient behavior and the total number of fissions in water-moderated solid fuel dispersion systems. Neutronics/thermal hydraulics-coupled kinetics analysis was performed in a hypothetical fuel debris system, where small fuel particles aggregate in water and become supercritical. Results showed that the number of fissions is 10 times larger when the fuel particle radius is reduced by one order of magnitude under conditions where heat transfer, i.e. from fuel to water, is emphasized. Moreover, there is a possibility that lower reactivity could give a larger number of fissions when the fuel particle size is very small. In addition, the number of fissions may be overestimated or underestimated to an unexpected extent unless appropriate fuel particle size is set on the analysis.

Journal Articles

Evaluation of thermal expansion reactivity feedback effect in water-moderated fuel-particle-dispersion system

Fukuda, Kodai

Proceedings of 4th Reactor Physics Asia Conference (RPHA2023) (Internet), 4 Pages, 2023/10

Brief evaluations were performed using the N-F model to quantitatively clarify the effect of thermal expansion on the consequences of criticality accidents in the water-moderated fuel-particle-dispersion system. The analysis clarified that ignoring thermal expansion can lead to underestimation or overestimation of the consequences by several tens of percent. It is concluded that evaluators can ignore the thermal expansion when they evaluate the consequences of the prompt supercritical transient in water-moderated solid fuel-dispersion systems, such as fuel debris systems. Only the Doppler effect can be considered when the fuel-temperature-feedback coefficient is prepared. However, depending on the required accuracy, the evaluators should take care of the error caused by ignoring thermal expansion.

Journal Articles

Elemental analysis and radioactivity evaluation of aerosols generated during heating of simulated fuel debris; The Urasol project in the framework of Fukushima Daiichi fuel debris removal

Tsubota, Yoichi; Porcheron, E.*; Journeau, C.*; Delacroix, J.*; Suteau, C.*; Lallot, Y.*; Bouland, A.*; Roulet, D.*; Mitsugi, Takeshi

Proceedings of International Conference on Environmental Remediation and Radioactive Waste Management (ICEM2023) (Internet), 6 Pages, 2023/10

In order to safely remove fuel debris from the Fukushima Daiichi Nuclear Power Station (1F), it is necessary to quantitatively evaluate radioactive airborne particulate generated by the cutting of nuclear fuel debris. We fabricated Uranium-bearing simulated fuel debris (SFD) with In/Ex-Vessel compositions and evaluated the physical and chemical properties of aerosols generated by heating the SFDs. Based on these results, we estimated the isotopic composition and radioactivity of aerosols produced when 1F-Unit2 fuel debris is laser cut, which is a typical example of a heating method. Plutonium, mainly $$^{238}$$Pu,$$^{241}$$Am, and $$^{244}$$Cm were found to be the alpha nuclide, and $$^{241}$$Pu, $$^{137}$$Cs-Ba, and $$^{90}$$Sr-Y were found to be the beta nuclide of interest.

Journal Articles

Aerosol characterization during heating and mechanical cutting of simulated uranium containing debris; The URASOL project in the framework of Fukushima Daiichi fuel debris removal

Porcheron, E.*; Journeau, C.*; Delacroix, J.*; Berlemont, R.*; Bouland, A.*; Lallot, Y.*; Tsubota, Yoichi; Ikeda, Atsushi; Mitsugi, Takeshi

Proceedings of International Conference on Environmental Remediation and Radioactive Waste Management (ICEM2023) (Internet), 5 Pages, 2023/10

Results of the URASOL project aimed at evaluating the generation and dispersion of radioactive aerosols during the cutting of fuel debris, a key issue in the decommissioning of the damaged reactors at the Fukushima Daiichi Nuclear Power Station (1F), are presented in this report. Characterization of aerosols generated during heating and mechanical cutting of simulated fuel debris in terms of mass concentration, real-time number density, mass-based particle size distribution, morphology, and chemical properties is reported. In the heating tests, an increase in particle size with increasing temperature was observed, and in terms of particle number density, the case using depleted uranium simulated fuel debris had a smaller number density than the test using Hf-containing simulated fuel debris. In mechanical cleavage, the aerodynamic median mass diameter of the aerosol was almost the same for the radioactive and non-radioactive samples (about 3.7$$sim$$4.4 $$mu$$m).

Journal Articles

Hierarchical Bayesian modeling to quantify fracture limit uncertainty of high-burnup advanced fuel cladding tubes under loss-of-coolant accident conditions

Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka

Nuclear Engineering and Design, 411, p.112443_1 - 112443_12, 2023/09

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

JAEA Reports

Study of fabrication of SiC-matrixed fuel compact for HTGR

Kawano, Takahiro*; Mizuta, Naoki; Ueta, Shohei; Tachibana, Yukio; Yoshida, Katsumi*

JAEA-Technology 2023-014, 37 Pages, 2023/08

JAEA-Technology-2023-014.pdf:2.35MB

Fuel compact for High Temperature Gas-cooled Reactor (HTGR) is fabricated by calcinating a matrix consisting of graphite and binder with the coated fuel particle. The SiC-matrixed fuel compact uses a new matrix made of silicon carbide (SiC) replacing the conventional graphite. Applying the SiC-matrixed fuel compact for HTGRs is expected to improve their performance such as power densities. In this study, the sintering conditions for applying SiC as the matrix of fuel compacts for HTGR are selected, and the density and thermal conductivity of the prototype SiC are measured.

Journal Articles

Behavior of FeCrAl-ODS cladding tube under loss-of-coolant accident conditions

Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki

Journal of Nuclear Materials, 582, p.154467_1 - 154467_12, 2023/08

 Times Cited Count:3 Percentile:95.99(Materials Science, Multidisciplinary)

1321 (Records 1-20 displayed on this page)